Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
J Clin Invest ; 134(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557489

RESUMO

Regulated exocytosis is initiated by increased Ca2+ concentrations in close spatial proximity to secretory granules, which is effectively prevented when the cell is at rest. Here we showed that exocytosis of zymogen granules in acinar cells was driven by Ca2+ directly released from acidic Ca2+ stores including secretory granules through NAADP-activated two-pore channels (TPCs). We identified OCaR1 (encoded by Tmem63a) as an organellar Ca2+ regulator protein integral to the membrane of secretory granules that controlled Ca2+ release via inhibition of TPC1 and TPC2 currents. Deletion of OCaR1 led to extensive Ca2+ release from NAADP-responsive granules under basal conditions as well as upon stimulation of GPCR receptors. Moreover, OCaR1 deletion exacerbated the disease phenotype in murine models of severe and chronic pancreatitis. Our findings showed OCaR1 as a gatekeeper of Ca2+ release that endows NAADP-sensitive secretory granules with an autoregulatory mechanism preventing uncontrolled exocytosis and pancreatic tissue damage.


Assuntos
Canais de Cálcio , Cálcio , Camundongos , Animais , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Cálcio/metabolismo , Pâncreas/metabolismo , Exocitose/fisiologia , Vesículas Secretórias/genética
2.
Nat Immunol ; 24(12): 2021-2031, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37903858

RESUMO

S100A8/S100A9 is a proinflammatory mediator released by myeloid cells during many acute and chronic inflammatory disorders. However, the precise mechanism of its release from the cytosolic compartment of neutrophils is unclear. Here, we show that E-selectin-induced rapid S100A8/S100A9 release during inflammation occurs in an NLRP3 inflammasome-dependent fashion. Mechanistically, E-selectin engagement triggers Bruton's tyrosine kinase-dependent tyrosine phosphorylation of NLRP3. Concomitant potassium efflux via the voltage-gated potassium channel KV1.3 mediates ASC oligomerization. This is followed by caspase 1 cleavage and downstream activation of pore-forming gasdermin D, enabling cytosolic release of S100A8/S100A9. Strikingly, E-selectin-mediated gasdermin D pore formation does not result in cell death but is a transient process involving activation of the ESCRT III membrane repair machinery. These data clarify molecular mechanisms of controlled S100A8/S100A9 release from neutrophils and identify the NLRP3/gasdermin D axis as a rapid and reversible activation system in neutrophils during inflammation.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Gasderminas , Neutrófilos/metabolismo , Selectina E/metabolismo , Calgranulina A/metabolismo , Calgranulina B/metabolismo , Inflamação/metabolismo
3.
STAR Protoc ; 4(3): 102459, 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37516972

RESUMO

Two-hybrid Förster resonance energy transfer (FRET) provides proximity, affinity, and stoichiometry information in binding interactions. We present an image-based approach that surpasses traditional two-hybrid FRET assays in precision and robustness. We outline instrument setup and image acquisition and further describe steps for image preprocessing and two-hybrid FRET analysis using provided software to simplify the workflow. This protocol is compatible with confocal microscopes for high-precision and imaging plate readers for high-throughput applications. A plasmid-based reference system supports fast establishment of the protocol. For complete details on the use and execution of this protocol, please refer to Rivas et al.1.

4.
Handb Exp Pharmacol ; 278: 277-304, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36894791

RESUMO

Endo-lysosomes are membrane-bound acidic organelles that are involved in endocytosis, recycling, and degradation of extracellular and intracellular material. The membranes of endo-lysosomes express several Ca2+-permeable cation ion channels, including two-pore channels (TPC1-3) and transient receptor potential mucolipin channels (TRPML1-3). In this chapter, we will describe four different state-of-the-art Ca2+ imaging approaches, which are well-suited to investigate the function of endo-lysosomal cation channels. These techniques include (1) global cytosolic Ca2+ measurements, (2) peri-endo-lysosomal Ca2+ imaging using genetically encoded Ca2+ sensors that are directed to the cytosolic endo-lysosomal membrane surface, (3) Ca2+ imaging of endo-lysosomal cation channels, which are engineered in order to redirect them to the plasma membrane in combination with approaches 1 and 2, and (4) Ca2+ imaging by directing Ca2+ indicators to the endo-lysosomal lumen. Moreover, we will review useful small molecules, which can be used as valuable tools for endo-lysosomal Ca2+ imaging. Rather than providing complete protocols, we will discuss specific methodological issues related to endo-lysosomal Ca2+ imaging.


Assuntos
Cálcio , Canais de Potencial de Receptor Transitório , Humanos , Cálcio/metabolismo , Lisossomos/metabolismo , Sinalização do Cálcio , Cátions/metabolismo
5.
EMBO Mol Med ; 14(9): e15377, 2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-35929194

RESUMO

Lysosomes are cell organelles that degrade macromolecules to recycle their components. If lysosomal degradative function is impaired, e.g., due to mutations in lysosomal enzymes or membrane proteins, lysosomal storage diseases (LSDs) can develop. LSDs manifest often with neurodegenerative symptoms, typically starting in early childhood, and going along with a strongly reduced life expectancy and quality of life. We show here that small molecule activation of the Ca2+ -permeable endolysosomal two-pore channel 2 (TPC2) results in an amelioration of cellular phenotypes associated with LSDs such as cholesterol or lipofuscin accumulation, or the formation of abnormal vacuoles seen by electron microscopy. Rescue effects by TPC2 activation, which promotes lysosomal exocytosis and autophagy, were assessed in mucolipidosis type IV (MLIV), Niemann-Pick type C1, and Batten disease patient fibroblasts, and in neurons derived from newly generated isogenic human iPSC models for MLIV and Batten disease. For in vivo proof of concept, we tested TPC2 activation in the MLIV mouse model. In sum, our data suggest that TPC2 is a promising target for the treatment of different types of LSDs, both in vitro and in-vivo.


Assuntos
Doenças por Armazenamento dos Lisossomos , Mucolipidoses , Lipofuscinoses Ceroides Neuronais , Animais , Pré-Escolar , Humanos , Lisossomos/metabolismo , Camundongos , Mucolipidoses/genética , Mucolipidoses/metabolismo , Lipofuscinoses Ceroides Neuronais/metabolismo , Qualidade de Vida
6.
Pflugers Arch ; 474(7): 649-663, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35556164

RESUMO

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are the molecular correlate of the If current and are critically involved in controlling neuronal excitability and the autonomous rhythm of the heart. The HCN4 isoform is the main HCN channel subtype expressed in the sinoatrial node (SAN), a tissue composed of specialized pacemaker cells responsible for generating the intrinsic heartbeat. More than 40 years ago, the If current was first discovered in rabbit SAN tissue. Along with this discovery, a theory was proposed that cyclic adenosine monophosphate-dependent modulation of If mediates heart rate regulation by the autonomic nervous system-a process called chronotropic effect. However, up to the present day, this classical theory could not be reliably validated. Recently, new concepts emerged confirming that HCN4 channels indeed play an important role in heart rate regulation. However, the cellular mechanism by which HCN4 controls heart rate turned out to be completely different than originally postulated. Here, we review the latest findings regarding the physiological role of HCN4 in the SAN. We describe a newly discovered mechanism underlying heart rate regulation by HCN4 at the tissue and single cell levels, and we discuss these observations in the context of results from previously studied HCN4 mouse models.


Assuntos
Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Nó Sinoatrial , Animais , AMP Cíclico , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Frequência Cardíaca , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Camundongos , Coelhos
7.
Nat Protoc ; 17(5): 1189-1222, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35314849

RESUMO

The mouse is a common and cost-effective animal model for basic research, and the number of genetically engineered mouse models with cardiac phenotype is increasing. In vivo electrophysiological study in mice is similar to that performed in humans. It is indispensable for acquiring intracardiac electrocardiogram recordings and determining baseline cardiac cycle intervals. Furthermore, the use of programmed electrical stimulation enables determination of parameters such as sinoatrial conduction time, sinus node recovery time, atrioventricular-nodal conduction properties, Wenckebach periodicity, refractory periods and arrhythmia vulnerability. This protocol describes specific procedures for determining these parameters that were adapted from analogous human protocols for use in mice. We include details of ex vivo electrophysiological study, which provides detailed insights into intrinsic cardiac electrophysiology without external influences from humoral and neural factors. In addition, we describe a heart preparation with intact innervation by the vagus nerve that can be used as an ex vivo model for vagal control of the cardiac conduction system. Data acquisition for in vivo and ex vivo electrophysiological study takes ~1 h per mouse, depending on the number of stimulation protocols applied during the procedure. The technique yields highly reliable results and can be used for phenotyping of cardiac disease models, elucidating disease mechanisms and confirming functional improvements in gene therapy approaches as well as for drug and toxicity testing.


Assuntos
Sistema de Condução Cardíaco , Nó Sinoatrial , Animais , Eletrocardiografia , Sistema de Condução Cardíaco/fisiologia , Frequência Cardíaca/fisiologia , Camundongos , Nó Sinoatrial/fisiologia , Nervo Vago/fisiologia
8.
Nat Commun ; 13(1): 318, 2022 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-35031603

RESUMO

Lung emphysema and chronic bronchitis are the two most common causes of chronic obstructive pulmonary disease. Excess macrophage elastase MMP-12, which is predominantly secreted from alveolar macrophages, is known to mediate the development of lung injury and emphysema. Here, we discovered the endolysosomal cation channel mucolipin 3 (TRPML3) as a regulator of MMP-12 reuptake from broncho-alveolar fluid, driving in two independently generated Trpml3-/- mouse models enlarged lung injury, which is further exacerbated after elastase or tobacco smoke treatment. Mechanistically, using a Trpml3IRES-Cre/eR26-τGFP reporter mouse model, transcriptomics, and endolysosomal patch-clamp experiments, we show that in the lung TRPML3 is almost exclusively expressed in alveolar macrophages, where its loss leads to defects in early endosomal trafficking and endocytosis of MMP-12. Our findings suggest that TRPML3 represents a key regulator of MMP-12 clearance by alveolar macrophages and may serve as therapeutic target for emphysema and chronic obstructive pulmonary disease.


Assuntos
Macrófagos Alveolares/enzimologia , Metaloproteinase 12 da Matriz/metabolismo , Elastase Pancreática/metabolismo , Enfisema Pulmonar/enzimologia , Canais de Potencial de Receptor Transitório/deficiência , Animais , Modelos Animais de Doenças , Endossomos/metabolismo , Feminino , Humanos , Pulmão/enzimologia , Metaloproteinase 12 da Matriz/genética , Camundongos , Camundongos Knockout , Elastase Pancreática/genética , Enfisema Pulmonar/genética , Enfisema Pulmonar/metabolismo , Canais de Potencial de Receptor Transitório/genética
9.
Life Sci Alliance ; 4(8)2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34183443

RESUMO

Age-related macular degeneration (AMD) is the most common cause of blindness among the elderly and can be classified either as dry or as neovascular (or wet). Neovascular AMD is characterized by a strong immune response and the inadequate release of cytokines triggering angiogenesis and induction of photoreceptor death. The pathomechanisms of AMD are only partly understood. Here, we identify the endolysosomal two-pore cation channel TPC2 as a key factor of neovascularization and immune activation in the laser-induced choroidal neovascularization (CNV) mouse model of AMD. Block of TPC2 reduced retinal VEGFA and IL-1ß levels and diminished neovascularization and immune activation. Mechanistically, TPC2 mediates cationic currents in endolysosomal organelles of immune cells and lack of TPC2 leads to reduced IL-1ß levels in areas of choroidal neovascularization due to endolysosomal trapping. Taken together, our study identifies TPC2 as a promising novel therapeutic target for the treatment of AMD.


Assuntos
Canais de Cálcio/genética , Interleucina-1beta/metabolismo , Lasers/efeitos adversos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Degeneração Macular Exsudativa/genética , Animais , Linhagem Celular , Modelos Animais de Doenças , Angiofluoresceinografia , Humanos , Lisossomos/metabolismo , Camundongos , Retina/metabolismo , Degeneração Macular Exsudativa/etiologia , Degeneração Macular Exsudativa/metabolismo
10.
Front Physiol ; 12: 669029, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34122140

RESUMO

The sinoatrial node (SAN) is the primary pacemaker of the heart and is responsible for generating the intrinsic heartbeat. Within the SAN, spontaneously active pacemaker cells initiate the electrical activity that causes the contraction of all cardiomyocytes. The firing rate of pacemaker cells depends on the slow diastolic depolarization (SDD) and determines the intrinsic heart rate (HR). To adapt cardiac output to varying physical demands, HR is regulated by the autonomic nervous system (ANS). The sympathetic and parasympathetic branches of the ANS innervate the SAN and regulate the firing rate of pacemaker cells by accelerating or decelerating SDD-a process well-known as the chronotropic effect. Although this process is of fundamental physiological relevance, it is still incompletely understood how it is mediated at the subcellular level. Over the past 20 years, most of the work to resolve the underlying cellular mechanisms has made use of genetically engineered mouse models. In this review, we focus on the findings from these mouse studies regarding the cellular mechanisms involved in the generation and regulation of the heartbeat, with particular focus on the highly debated role of the hyperpolarization-activated cyclic nucleotide-gated cation channel HCN4 in mediating the chronotropic effect. By focusing on experimental data obtained in mice and humans, but not in other species, we outline how findings obtained in mice relate to human physiology and pathophysiology and provide specific information on how dysfunction or loss of HCN4 channels leads to human SAN disease.

12.
Prog Biophys Mol Biol ; 166: 51-60, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33753086

RESUMO

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are key proteins involved in the initiation and regulation of the heartbeat. Pacemaker cells within the sinoatrial node generate the electrical impulse that underlies the contraction of all atrial and ventricular cardiomyocytes. To generate a stable heart rhythm, it is necessary that the spontaneous activity of pacemaker cells is synchronized. Entrainment processes in the sinoatrial node create synchrony and also mediate heart rate regulation. In the past years it has become clear that the role of HCN channels goes beyond just pacemaking and that the channels play pivotal roles in these entrainment processes that coordinate and balance sinoatrial node network activity. Here, we review the role of HCN channels in the central pacemaker process and highlight new aspects of the contribution of HCN channels to stabilizing the electrical activity of the sinoatrial node network, especially during heart rate regulation by the autonomic nervous system.


Assuntos
Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Nó Sinoatrial , Frequência Cardíaca , Ventrículos do Coração , Miócitos Cardíacos
13.
J Vis Exp ; (168)2021 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-33645573

RESUMO

Blood pressure (BP) and heart rate (HR) are both controlled by the autonomic nervous system (ANS) and are closely intertwined due to reflex mechanisms. The baroreflex is a key homeostatic mechanism to counteract acute, short-term changes in arterial BP and to maintain BP in a relatively narrow physiological range. BP is sensed by baroreceptors located in the aortic arch and carotid sinus. When BP changes, signals are transmitted to the central nervous system and are then communicated to the parasympathetic and sympathetic branches of the autonomic nervous system to adjust HR. A rise in BP causes a reflex decrease in HR, a drop in BP causes a reflex increase in HR. Baroreflex sensitivity (BRS) is the quantitative relationship between changes in arterial BP and corresponding changes in HR. Cardiovascular diseases are often associated with impaired baroreflex function. In various studies reduced BRS has been reported in e.g., heart failure, myocardial infarction, or coronary artery disease. Determination of BRS requires information from both BP and HR, which can be recorded simultaneously using telemetric devices. The surgical procedure is described beginning with the insertion of the pressure sensor into the left carotid artery and positioning of its tip in the aortic arch to monitor arterial pressure followed by the subcutaneous placement of the transmitter and ECG electrodes. We also describe postoperative intensive care and analgesic management. After a two-week period of post-surgery recovery long-term ECG and BP recordings are performed in conscious and unrestrained mice. Finally, we include examples of high-quality recordings and the analysis of spontaneous baroreceptor sensitivity using the sequence method.


Assuntos
Barorreflexo/fisiologia , Pressão Sanguínea/fisiologia , Estado de Consciência/fisiologia , Eletrocardiografia , Telemetria , Animais , Artérias Carótidas/fisiologia , Ritmo Circadiano/fisiologia , Eletrodos Implantados , Frequência Cardíaca/fisiologia , Humanos , Masculino , Camundongos Endogâmicos C57BL , Processamento de Sinais Assistido por Computador , Software
14.
Nat Biotechnol ; 39(6): 737-746, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33558697

RESUMO

Organoid models of early tissue development have been produced for the intestine, brain, kidney and other organs, but similar approaches for the heart have been lacking. Here we generate complex, highly structured, three-dimensional heart-forming organoids (HFOs) by embedding human pluripotent stem cell aggregates in Matrigel followed by directed cardiac differentiation via biphasic WNT pathway modulation with small molecules. HFOs are composed of a myocardial layer lined by endocardial-like cells and surrounded by septum-transversum-like anlagen; they further contain spatially and molecularly distinct anterior versus posterior foregut endoderm tissues and a vascular network. The architecture of HFOs closely resembles aspects of early native heart anlagen before heart tube formation, which is known to require an interplay with foregut endoderm development. We apply HFOs to study genetic defects in vitro by demonstrating that NKX2.5-knockout HFOs show a phenotype reminiscent of cardiac malformations previously observed in transgenic mice.


Assuntos
Coração/embriologia , Intestinos/embriologia , Organoides/embriologia , Padronização Corporal , Desenvolvimento Embrionário , Técnicas de Silenciamento de Genes , Proteínas de Fluorescência Verde/genética , Fator 4 Nuclear de Hepatócito/genética , Proteína Homeobox Nkx-2.5/genética , Humanos , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXF/genética , Análise de Sequência de RNA
15.
Glia ; 69(4): 872-889, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33156956

RESUMO

Astrocytes are an important component of the multipartite synapse and crucial for proper neuronal network function. Although small GTPases of the Rho family are powerful regulators of cellular morphology, the signaling modules of Rho-mediated pathways in astrocytes remain enigmatic. Here we demonstrated that the serotonin receptor 4 (5-HT4 R) is expressed in hippocampal astrocytes, both in vitro and in vivo. Through fluorescence microscopy, we established that 5-HT4 R activation triggered RhoA activity via Gα13 -mediated signaling, which boosted filamentous actin assembly, leading to morphological changes in hippocampal astrocytes. We investigated the effects of these 5-HT4 R-mediated changes in mixed cultures and in acute slices, in which 5-HT4 R was expressed exclusively in astrocytes. In both systems, 5-HT4 R-RhoA signaling changed glutamatergic synaptic transmission: It increased the frequency of miniature excitatory postsynaptic currents (mEPSCs) in mixed cultures and reduced the paired-pulse-ratio (PPR) of field excitatory postsynaptic potentials (fEPSPs) in acute slices. Overall, our present findings demonstrate that astrocytic 5-HT4 R-Gα13 -RhoA signaling is a previously unrecognized molecular pathway involved in the functional regulation of excitatory synaptic circuits.


Assuntos
Astrócitos , Serotonina , Potenciais Pós-Sinápticos Excitadores , Hipocampo , Receptores de Serotonina/genética , Transmissão Sináptica
16.
Nat Commun ; 11(1): 5555, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33144559

RESUMO

It is highly debated how cyclic adenosine monophosphate-dependent regulation (CDR) of the major pacemaker channel HCN4 in the sinoatrial node (SAN) is involved in heart rate regulation by the autonomic nervous system. We addressed this question using a knockin mouse line expressing cyclic adenosine monophosphate-insensitive HCN4 channels. This mouse line displayed a complex cardiac phenotype characterized by sinus dysrhythmia, severe sinus bradycardia, sinus pauses and chronotropic incompetence. Furthermore, the absence of CDR leads to inappropriately enhanced heart rate responses of the SAN to vagal nerve activity in vivo. The mechanism underlying these symptoms can be explained by the presence of nonfiring pacemaker cells. We provide evidence that a tonic and mutual interaction process (tonic entrainment) between firing and nonfiring cells slows down the overall rhythm of the SAN. Most importantly, we show that the proportion of firing cells can be increased by CDR of HCN4 to efficiently oppose enhanced responses to vagal activity. In conclusion, we provide evidence for a novel role of CDR of HCN4 for the central pacemaker process in the sinoatrial node.


Assuntos
Relógios Biológicos , AMP Cíclico/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Nó Sinoatrial/patologia , Potenciais de Ação/efeitos dos fármacos , Animais , Arritmias Cardíacas/complicações , Arritmias Cardíacas/patologia , Relógios Biológicos/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Bradicardia/complicações , Bradicardia/patologia , Carbacol/farmacologia , Eletrocardiografia , Feminino , Células HEK293 , Coração/efeitos dos fármacos , Coração/fisiopatologia , Frequência Cardíaca/efeitos dos fármacos , Humanos , Camundongos Endogâmicos C57BL , Subunidades Proteicas/metabolismo , Reprodutibilidade dos Testes , Nó Sinoatrial/fisiopatologia , Nervo Vago/efeitos dos fármacos , Nervo Vago/fisiopatologia
17.
Sci Adv ; 6(46)2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33177082

RESUMO

Endolysosomes are dynamic, intracellular compartments, regulating their surface-to-volume ratios to counteract membrane swelling or shrinkage caused by osmotic challenges upon tubulation and vesiculation events. While osmosensitivity has been extensively described on the plasma membrane, the mechanisms underlying endolysosomal surface-to-volume ratio changes and identities of involved ion channels remain elusive. Endolysosomes mediate endocytosis, exocytosis, cargo transport, and sorting of material for recycling or degradation. We demonstrate the endolysosomal cation channel TRPML2 to be hypotonicity/mechanosensitive, a feature crucial to its involvement in fast-recycling processes of immune cells. We demonstrate that the phosphoinositide binding pocket is required for TRPML2 hypotonicity-sensitivity, as substitution of L314 completely abrogates hypotonicity-sensitivity. Last, the hypotonicity-insensitive TRPML2 mutant L314R slows down the fast recycling pathway, corroborating the functional importance of hypotonicity-sensitive TRPML2. Our results highlight TRPML2 as an accelerator of endolysosomal trafficking by virtue of its hypotonicity-sensitivity, with implications in immune cell surveillance and viral trafficking.

18.
Sci Adv ; 6(34): eaba5614, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32875106

RESUMO

Catalytically inactive dCas9 fused to transcriptional activators (dCas9-VPR) enables activation of silent genes. Many disease genes have counterparts, which serve similar functions but are expressed in distinct cell types. One attractive option to compensate for the missing function of a defective gene could be to transcriptionally activate its functionally equivalent counterpart via dCas9-VPR. Key challenges of this approach include the delivery of dCas9-VPR, activation efficiency, long-term expression of the target gene, and adverse effects in vivo. Using dual adeno-associated viral vectors expressing split dCas9-VPR, we show efficient transcriptional activation and long-term expression of cone photoreceptor-specific M-opsin (Opn1mw) in a rhodopsin-deficient mouse model for retinitis pigmentosa. One year after treatment, this approach yields improved retinal function and attenuated retinal degeneration with no apparent adverse effects. Our study demonstrates that dCas9-VPR-mediated transcriptional activation of functionally equivalent genes has great potential for the treatment of genetic disorders.


Assuntos
Sistemas CRISPR-Cas , Terapia Genética , Animais , Cegueira/genética , Cegueira/terapia , Camundongos , Fatores de Transcrição/genética , Ativação Transcricional
19.
Proc Natl Acad Sci U S A ; 117(30): 18068-18078, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32661165

RESUMO

Mast cells and basophils are main drivers of allergic reactions and anaphylaxis, for which prevalence is rapidly increasing. Activation of these cells leads to a tightly controlled release of inflammatory mediators stored in secretory granules. The release of these granules is dependent on intracellular calcium (Ca2+) signals. Ca2+ release from endolysosomal compartments is mediated via intracellular cation channels, such as two-pore channel (TPC) proteins. Here, we uncover a mechanism for how TPC1 regulates Ca2+ homeostasis and exocytosis in mast cells in vivo and ex vivo. Notably, in vivo TPC1 deficiency in mice leads to enhanced passive systemic anaphylaxis, reflected by increased drop in body temperature, most likely due to accelerated histamine-induced vasodilation. Ex vivo, mast cell-mediated histamine release and degranulation was augmented upon TPC1 inhibition, although mast cell numbers and size were diminished. Our results indicate an essential role of TPC1 in endolysosomal Ca2+ uptake and filling of endoplasmic reticulum Ca2+ stores, thereby regulating exocytosis in mast cells. Thus, pharmacological modulation of TPC1 might blaze a trail to develop new drugs against mast cell-related diseases, including allergic hypersensitivity.


Assuntos
Anafilaxia/etiologia , Anafilaxia/metabolismo , Canais de Cálcio/deficiência , Suscetibilidade a Doenças , Mastócitos/imunologia , Mastócitos/metabolismo , Biomarcadores , Sinalização do Cálcio , Degranulação Celular , Citocinas/metabolismo , Predisposição Genética para Doença , Histamina/metabolismo , Imunoglobulina E/imunologia , Mediadores da Inflamação/metabolismo
20.
Elife ; 92020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-32167471

RESUMO

Ion selectivity is a defining feature of a given ion channel and is considered immutable. Here we show that ion selectivity of the lysosomal ion channel TPC2, which is hotly debated (Calcraft et al., 2009; Guo et al., 2017; Jha et al., 2014; Ruas et al., 2015; Wang et al., 2012), depends on the activating ligand. A high-throughput screen identified two structurally distinct TPC2 agonists. One of these evoked robust Ca2+-signals and non-selective cation currents, the other weaker Ca2+-signals and Na+-selective currents. These properties were mirrored by the Ca2+-mobilizing messenger, NAADP and the phosphoinositide, PI(3,5)P2, respectively. Agonist action was differentially inhibited by mutation of a single TPC2 residue and coupled to opposing changes in lysosomal pH and exocytosis. Our findings resolve conflicting reports on the permeability and gating properties of TPC2 and they establish a new paradigm whereby a single ion channel mediates distinct, functionally-relevant ionic signatures on demand.


Assuntos
Agonistas dos Canais de Cálcio/farmacologia , Canais de Cálcio/metabolismo , Macrófagos/metabolismo , Cloridrato de Raloxifeno/farmacologia , Animais , Benzilisoquinolinas/farmacologia , Cálcio/metabolismo , Agonistas dos Canais de Cálcio/química , Canais de Cálcio/genética , Flufenazina/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Células HeLa , Humanos , Ionomicina/farmacologia , Macrófagos/efeitos dos fármacos , Camundongos , NADP/análogos & derivados , NADP/metabolismo , Fosfatos de Fosfatidilinositol/farmacologia , Imagem Individual de Molécula , Sódio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...